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Abstracts for tutorial lectures

Workshop Part I : First Principles Method 

TL 01: Density Functional Theory 
Manoj Kumar Harbola

Indian Institute of Technology, Kanpur

Fundamentals of density-functional theory - I
Fundamentals of density-functional theory - II

In these lectures we will discuss basics of density-functional theory with emphasis on exact results.
These  exact  results  form the  basis  for  development  of  new  functionals  and  in  analysing  and
understanding the results obtained by density-functional based calculations.

TL 02: Density Functional Theory: Status, Achievements, Challenges
Prasanjit Samal

National Institute of Science Education and Research, Bhubneswar

Topic I: Generalized Gradient Expansion (GGA) [Day-1]
Topic II: Meta-Generalized Gradient Expansion (meta-GGA) [Day-2]
Topic III: Hybrid density Approximation [Day-3]
Topic IV: Implementation procedures in codes [Day-4]

Day-3 & Day-4 lectures can be merged if the time limit is short.

TL 03: GW-BSE Method (TBA)
Manish Jain

Indian Institute of Science, Bangalore

TL 04: Wannierization and Identification of Topological Phases
Jaejun Yu

Seoul National University, South Korea

Lecture I: Topological ideas in Condensed Matter Systems
    0. Geometric phases in physics
    1. Berry phase and Bloch state:
    2. Berry phase, Berry curvature, and topological invariants
Lecture II: Practical calculations of topological invariants and related properties
    0. Parametric Hamiltonians 
    1. Topological bands, Wilson loops, and Wannier functions
    2. Computing Berry connection in Discretized BZs



3. Examples
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TL 05: Magnonic analogs of topological insulators in 2 and 3 dimensions
Hosho Katsura

University of Tokyo, Japan

Magnons (spin waves)  are  collective excitations  in  magnets  responsible  for  their  magnetic  and
thermal properties. Recently, there has been a growing interest in studying magnetic systems with
nontrivial magnon band topology. However, examples discussed so far have been mostly limited to
systems which can be thought of as a magnonic analog of integer quantum Hall systems. In this
talk, I will talk about a class of magnonic systems that are the natural counterparts of time-reversal
symmetric topological insulators in two and three dimensions [1,2]. The feature of these systems is
that each pair of bands related by pseudo-time-reversal symmetry carries a Z2 topological invariant.
I will demonstrate that the Z2 invariant so defined characterizes the presence/absence of helical
edge/surface modes. If time permits, I will touch on magnonic analogs of topological crystalline
insulators [3].
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TL 06: Configuration interaction approach and its applications 
       to the optical absorption spectra of finite systems

Alok Shukla
Indian Institute of Technology, Bombay

Treatment  of  electron correlation effects  is  one of  the most   challenging problems in quantum
many-electron physics. Several approaches such  as many-body perturbation theory, Monte-Carlo
approach, coupled-cluster theory,  Green's function method, configuration interaction approach etc.
are available  to treat electron correlation effects from first principles. In this talk we  will discuss
the configuration interaction (CI) method for  computing electron correlation effects on the ground
and excited states of  finite systems, and discuss its pros and cons. Furthermore, optical absorption
spectra of several finite systems such as clusters, pi-conjugated moleculess, and graphene quantum
dots computed using the CI method will be presented and discussed. 

Workshop Part II: Model Hamiltonian based approaches

TL 07: Introduction to Density Matrix Renormalization Group (DMRG) method.
Suryanarayana Ramasesha

Indian Institute of Science, Bengaluru 560012

Lecture 1:  Introduction to Numerical Many-Body Techniques

In this talk, we begin with  basic approximations for electronic structure of molecules and solids,
namely  Born-Oppenheimer  approximation  and  independent  particle  approximation.   We  will
introduce  methods  which  go  beyond  the  independent  particle  approximation.  These  include
configuration  interaction  methods,  coupled  cluster  techniques.  We  then  introduce  model
Hamiltonians  and  methods  for  solving  these  by  using  exact  diagonalization  and  Monte  Carlo
methods. Limitations of these methods will be touched upon.

Lecture 2: Introduction to DMRG method

This talk will begin with early attempts to develop RG methods for interacting Hamiltonians. We
will then introduce the infinite DMRG method and its implementation. The symmetrized DMRG
method for desired excited states will be introduced. It will be followed by an introduction to finite
DMRG method. We will discuss methods for computing matrix elements. The connection between
the DMRG method and the Matrix Product States method. Briefly, MPS method for 2-d lattices,
namely PEPS will be introduced and method for obtaining the ground state will also be discussed.

Lecture 3: Dynamical Properties from DMRG method

In this lecture I will discuss methods of computing frequency dependent response functions. This
will be followed by introduction to time dependent DMRG. In the first part, Lanczos technique for
dynamic response functions will be introduced. This will be followed by an introduction to the



Correction Vector method. Under the time dependent DMRG method, I will discuss the need for
adapting space and discuss different algorithm for implementation of tDMRG will be discussed.

TL 08: Exact diagonalization for quantum spin systems
Tokuro Shimokawa

Okinawa Institute of Science and Technology, Japan

The  goal  of  this  tutorial  is  to  understand  the  principles  of  the  three  Lanczos-based  methods,
Lanczos,  Finite-Temperature  Lanczos,  and  continued  fraction  methods.  These  methods  are
important and fundamental to investigate the ground-state and finite-temperature physics, and spin
dynamics in quantum frustrated magnets from finite-size systems. We here focus on an S=1/2 XXZ
spin model for simplicity. We will also learn how to make S=1/2 ED codes with bit representations
and bitwise operations, which are efficient for fast ED codes, and will learn the simplest block
diagonalization  technique  under  conserved  magnetization  via  Python  ED  sample  codes
[https://github.com/tshimokaw/].
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TL 09: Modern mean field theory (TBA)
Arun Paramekanti

University of Toronto, Canada

TL 10: Tensor network approach to two-dimensional frustrated spin systems
Tsuyoshi Okubo

University of Tokyo, Japan

In this  tutorial,  I  will  introduce the tensor  network  method for  calculating the ground state  of
quantum lattice models. Specifically, we focus on infinite tensor product states (iTPS), also known
as infinite projected entanglement pair  states (iPEPS), for infinite two-dimensional systems. We
discuss when this method works efficiently, fundamental numerical algorithms for iTPS, and an
extension of iTPS for finite temperature properties.

In the Hands-on tutorial,  I  will  introduce an open-source software,  TeNeS, for the ground state
calculation based on iTPS.
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